Wave simulation in 2D heterogeneous transversely isotropic porous media with fractional attenuation: A Cartesian grid approach

نویسندگان

  • Emilie Blanc
  • Guillaume Chiavassa
  • Bruno Lombard
چکیده

A time-domain numerical modeling of transversely isotropic Biot poroelastic waves is proposed in two dimensions. The viscous dissipation occurring in the pores is described using the dynamic permeability model developed by Johnson-Koplik-Dashen (JKD). Some of the coefficients in the Biot-JKD model are proportional to the square root of the frequency. In the time-domain, these coefficients introduce shifted fractional derivatives of order 1/2, involving a convolution product. Based on a diffusive representation, the convolution kernel is replaced by a finite number of memory variables that satisfy local-in-time ordinary differential equations, resulting in the Biot-DA (diffusive approximation) model. The properties of both the Biot-JKD and the Biot-DA model are analyzed: hyperbolicity, decrease of energy, dispersion. To determine the coefficients of the diffusive approximation, two approaches are analyzed: Gaussian quadratures and optimization methods in the frequency range of interest. The nonlinear optimization is shown to be the better way of determination. A splitting strategy is then applied to approximate numerically the Biot-DA equations. The propagative part is discretized using a fourth-order ADER scheme on a Cartesian grid, whereas the diffusive part is solved exactly. An immersed interface method is implemented to take into account heterogeneous media on a Cartesian grid and to discretize the jump conditions at interfaces. Numerical experiments are presented. Comparisons with analytical solutions show the efficiency and the accuracy of the approach, and some numerical experiments are performed to investigate wave phenomena in complex media, such as multiple scattering across a set of random scatterers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Plane Waves in Anisotropic Magneto-Piezothermoelastic Diffusive Body with Fractional Order Derivative

In this paper the propagation of harmonic plane waves in a homogeneous anisotropic magneto-piezothermoelastic diffusive body with fractional order derivative is studied. The governing equations for a homogeneous transversely isotropic body in the context of the theory of thermoelasticity with diffusion given by Sherief et al. [1] are considered as a special case. It is found that three types of...

متن کامل

Wave Equations in Transversely Isotropic Media in Terms of Potential Functions (RESEARCH NOTE)

A complete series of potential functions for solving the wave equations in an almost transversely isotropic media is presented. The potential functions are reduced to only one potential function particularly for axisymmetric wave propagation problems. The potential functions presented in this paper can be reduced to Lekhnitskii-Hu-Nowacki solution for elastostatics problems.

متن کامل

Velocity Modeling in a Vertical Transversely Isotropic Medium Using Zelt Method

In the present paper, the Zelt algorithm has been extended for ray tracing through an anisotropic model. In anisotropic media, the direction of the propagated energy generally differs from that of the plane-wave propagation. This makes velocity values to be varied in different directions. Therefore, velocity modeling in such media is completely different from that in an isotropic media. The vel...

متن کامل

Attenuation analysis for heterogeneous transversely isotropic media

Attenuation coefficients obtained from seismic data may provide sensitive attributes for reservoir characterization and increase the robustness of AVO (amplitude variation with offset) analysis. Here, we present an algorithm for ray tracing in attenuative anisotropic media based on the methodology of C̆ervený and Ps̆enc̆ik. Both kinematic and dynamic ray tracing are carried out in an elastic refer...

متن کامل

Wave propagation across acoustic / Biot’s media: a finite-difference method

Numerical methods are developed to simulate the wave propagation in heterogeneous 2D fluid / poroelastic media. Wave propagation is described by the usual acoustics equations (in the fluid medium) and by the low-frequency Biot’s equations (in the porous medium). Interface conditions are introduced to model various hydraulic contacts between the two media: open pores, sealed pores, and imperfect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 275  شماره 

صفحات  -

تاریخ انتشار 2014